新能源汽车为啥老自燃?了解这9个原因你也是大神!深度科普好文
新能源汽车为啥老自燃?了解这9个原因你也是大神!深度科普好文
发布日期: 2024-09-22 09:53:21
   来源:米乐体育官方网站入口  
阅读数: 1

  新能源汽车蒸蒸日上的这十年,逐渐变大的基数带来了更多新能源汽车着火事故被报道出来,新能源汽车安全形势日趋严峻。

  为何新能源汽车自燃是只薛定谔的猫?本文解答不了所有难题,但可以为你揭开最浅的那层迷雾。

  2013年10月,一台特斯拉Model S蹭底之后,车载系统发出警告(蹭底后45-60秒),车主及时逃离(再过数秒),车子很快就烧没了(离车120秒后),特斯拉股价跌6%(这时抄底特斯拉美股特别爽)。

  在新型锂离子电池陆续装备新能源汽车的产业起步阶段,每一次电池自燃事故都能成为海内外新闻热点,对新能源车的不信任从未消停(塞麦尔维斯反射 Semmelweis Reflex),群众的呼声更随国家推广新能源汽车的热情而变得更“叛逆”。

  笔者同事买了一台蔚来ES6,隔壁车位的业主担心自燃,“疑似”动用私人关系让片区警察上门进行处分(此警察宣称全广州市都不允许装地库充电桩)并强制要求拆卸,后因现场视频素材被网络曝光,“疑似”违法动用关系的隔壁车位业主才终于消停。

  我们可以说某些群众是愚昧的,某些公仆是可以被XX的,但事情最终的原因依然是消费的人对新能源车(准确来说是动力电池)的不信任。

  电池是一个很复杂的储能装置,笔者最近想到一个类比,就是大家小时候用的镀银保温瓶,类比如下:

  4、保温瓶内胆只要碎一个口就会整体毁灭,电池烧一个就很容易火烧连营,损控很难做。

  5、保温瓶和电池的工业化制造都是很精密的(对应各自时代的工业水平),保温瓶一开始很贵,宋代皇帝赐给公主的嫁妆就是保温瓶(民族爱瓶传统),后来大幅降价飞入百姓家,电池也是如此。

  电池热失控(Thermal Runaway),造成的破坏将是毁灭性的。根据清华大学动力工程及工程热物理学博士 @姚昌晟 老师的描述:由100节带电量100Ah的电芯组成的电池组,失控能量达到240000000J,合57公斤。所以一旦我们说电池“TR”了,基本上就可以贴这张图了。

  正因为对新能源车这种新鲜事物的抗拒(人之常情)、媒体/自媒体只爱报道新能源车自燃(汽柴油车自燃成不了新闻热点)、好事不出门坏事行千里(完全不懂新能源车的大叔大妈的茶余饭后话题)、动力电池技术的确不够争气(客观事实),新能源车才会成为众矢之的。

  不过,大家大可不必过分担心,新能源乘用车的着火率正在逐年降低,2019年是万分之0.38,2020年是万分之0.18。除此以外还有两个要点要提的:商用车的标准更低,质量更差,电池总能量更高,烧起来更可怕;新能源累计产量不足5万辆的小车企(按接入车辆计算),着火率是超过10万辆的大车企之5倍。

  六成新能源车着火事故是电池本身热失控引起的,三成是充电事故,只有3.6%左右是因为行驶事故中的撞击。

  热失控的机理(学界一般称为“滥用”)可分为物理和电化学两大方向,为了让读者更好理解,笔者把它分得更细一些:

  这是最不讲武德的物理攻击,将一根导体(比如直径3mm钢针)插入动力电池中,正负极直接短路,热失控速度超快,几乎是瞬间就开始对外喷射火焰。

  穿刺的机理是内部短路,这种情形就像潜水艇在水下被物理击穿,除了全员殉国之外就没啥其他可能性了。

  自2021年1月1日实施的动力电池安全新国标GB 38031-2020《电动汽车用动力蓄电池安全要求》,并未引入穿刺试验,现有的试验则分为几类,其中电池单体进行过放电、过充电、外部短路、加热、温度循环、挤压试验,电池包或系统来进行振动、模拟碰撞、挤压、湿热循环、浸水、耐热性、温度冲击、盐雾、高海拔、过温保护、过流保护、外部短路保护、过充电保护过放电保护试验。

  虽然怎么都找不着穿刺试验,但之前就有自媒体给比亚迪磷酸铁锂刀片电池(CTP)做了一个,最终没起火,只是煮熟了鸡蛋。被打脸的宁德时代此后也发布了新款的安全电池,声称“只冒烟不起火”。

  内部短路很好理解,就是单体电池里头的正负极短接了,相当于自杀。自杀也分为快速自杀和慢性自杀两种,穿刺其实是内部短路当中的快速自杀,最凶险的一种,立即有报应,直接毁所有。

  慢性自杀的内部短路就要提到最近两年我们才更多谈起的“锂枝晶”,其实这样的一个问题已经困扰电池界数十年了,关于它在锂离子电池中的形成原因,笔者分几步讲讲:

  1、液态电解质的锂离子电池在首次充放电时,电极材料和电解液在固液相界面上发生很复杂的反应,形成一层覆盖于电极材料表面的钝化层,其中负极上的SEI膜(Solid Electrolyte Interphase)对电池的影响更大。这层SEI膜具有有机溶剂不溶性,是电子绝缘体所以e-过不了,同时是良好的离子导体所以Li+很愉快地过去了。

  2、SEI功劳这么大,结果就是有一种叫“锂枝晶”的东西要毁掉它。当锂离子在负极表面不均匀沉积就会成为锂枝晶的反动小团体(析锂效应 Li Plating 造成的 锂转化 Conversion),最可怕的是它还会继续不均匀生长下去,变得更长、更粗、更尖,“雨后春笋”一般。

  3、当春笋长到某些特定的程度,就会自然收割(靠近负极部位溶解),锂枝晶脱离电极,成为失去电化学活性的“死锂”,电池容量降低。

  4、降容还只是最小的事,大不了充电频繁一些。最无语的是这些锂枝晶还会刺破电池SEI隔膜(有学说否定这个说法),内部绝缘状态被打破,内部短路,自燃,释放小宇宙,进而火烧连营。

  P.S. 锂枝晶生长的速度与Li+偏移速度正相关,所以快充更容易生成锂枝晶,电池循环次数多则有更多锂枝晶(老旧电动车更容易自燃)。

  P.S. 锂枝晶是一个很大的话题,之后再另辟长文展开,夏至前写出来(反正我又没承诺哪一年夏至),保证不太监。

  快充之所以快,就是强行使锂离子快速从正极嵌出并嵌入负极,增大锂离子的流量与速度。强扭的瓜不甜,快充会影响SEI的稳定性,还会在极短的时间内带来比较大的发热量,发热也不均匀。

  这时候我们要提一下电池领域的三个温度:T1 自生热起始温度、T2 热失控引发温度、T3热失控最高温度。T2是一个很关键的温度,其机理在学界还没研究透彻(摘自欧阳明高院士演讲稿)。

  当然,因为有冷却系统的存在(风冷或者液冷),且电池换能效率特别高(热效率高于95%不少,不像内燃机那么弱鸡),电池没那么容易到达T2。

  配合“快充让电池发热量高且不均匀”这一条,电池里面一不小心到达T2热失控引发温度,完犊子了。

  充电过程中,Li+从正极化合物脱出到达负极晶格,正极处于高电位的贫锂态,负极处于低电位的富锂态。为了平衡电荷,相同数量的e-从负极脱出,嵌入正极。放电过程,反推即可。

  如果过充电(over charge,充满了还继续充),就会有过量的Li+嵌入负极,正极则因为Li+的过度脱嵌导致结构崩塌(发热+氧释放),氧气的释放还会促进造成电解质分解,电池里面压力增加,热失控风险大增。

  小时候玩四驱车的时候,多数小朋友大部分会选择过充电,以此获得更好的比赛成绩。只是过充电之后,镍氢电池的内部结构会崩塌,最终“爆浆”。

  另有研究表明,过放电过程中负极的温度始终高于正极,当内部短路出现时,热量在绕卷中积聚,进而增加热失控风险。

  很多朋友应该遇到过,智能手机和笔记本电脑的锂离子电池用到3-7%左右,系统会自动关机/进入待机状态。这是系统在防止电池过放电(over discharge,低于门限电压继续放电)。

  如果过放电发生得过于剧烈,最低电压的那节电池就会发生“反极”(类比成泰国变性?),这节最弱小无助的电池会被其他串联电池进行反向充电,电压是负值,活性物质结构崩塌,等效成一个电阻,异常发热,Game Over。

  这里统一说四种类型的滥用,都是外部环境给电池包的物理攻击,以下描述一下GB 38031-2020会对受测试电池包做什么:

  1、振动:SOC 50%以上,根据标准频率在x、y、z方向各振动1小时,模拟车辆颠簸。

  3、碰撞:整车质量3.5吨以下的受测试对象,x方向加速度最大28g,y方向最大15g,模拟车辆被碰撞。

  4、火烧:0℃下,用汽油火盘给预热60秒、直接烧70秒、隔着耐火隔板烧70秒(或继续直接烧60秒)、静置观察2小时,模拟车辆被火烧。

  以上四种工况,都是行车途中可能遇到的,其中车辆颠簸最常见,如果电池本身机械性能太菜,或者模组造得不结实,均有一定风险,当然这种可能性很低,之前有新能源车因线束固定不牢固被召回也不是电池包内部线束。

  挤压、碰撞、火烧都是车辆碰撞中可能衍生的滥用,有可能造成电池结构崩塌、SEI膜撕裂、电解液泄露、内部短路等问题。

  初中时候我们学过外部短路,正负极在电阻非常小的情况下连接成通路,因为I=U/R,所以电流过大,热量过多,电池受损。平时我们手握5号电池正负极,电池不会因此完蛋,是因为人体电阻有100000Ω那么大。

  造成外部短路的原因有很多,除了刚刚说到的碰撞,还有导体污染、浸水等。其中浸水是个很大的问题,2012年美国Fisker有16俩Karma就是因为在纽瓦克港被飓风Sandy次生的海水倒灌淹到了顶,随后自燃成了废铁。谁说水火不容的?电池能让水灾转身变火灾……

  浸水还会让BMS失效,电控失效之后,就如航母被打掉了舰岛,接下来发什么神经你也别太惊讶,一切皆有可能。

  外部短路的祸首是热量,所以在达到T2之前掐掉短路,或许还有得一救。如果是电瓶车雨天在外充电起火,那还是别去救了,赶紧拉闸、灭火、报警、逃离,惹不起惹不起。

  电动汽车的绝缘和BMS做得好很多,雨天充电没啥问题,别让充电插头灌了水就行。目前大厂家的电池包都有IP67防护等级,7代表电池包在1米深的水里面可以泡30分钟不失效,但非常不建议我们大家拿去涉水,电池包不进水,其他零部件泡了这么脏的水也是不行的,车况会迅速老化。

  所以那些自以为是开上了电动汽车就可以随意涉水不怕熄火的朋友,下次请悠着点了。

  单体电池(电芯)热失控并不可怕,可怕的是锂离子是自备燃烧条件的,在每个单体电池里面都有还原剂和氧化剂,万事俱备,连东风都不用,直接上“链式反应”,爱因斯坦骑单车图来一个。

  所以,绝大多数单体电池都是被带节奏给带起来的,别睡了起来嗨,来一曲《爱的供“氧”》,没多久就嗨过头了,TR王炸,天地灭。

  目前多数电动汽车改装都不属于“汽车改装”,应该属于最low的“汽车化妆”,不动电气线路的话影响不大,只是风阻更大些、续航更低些而已,基本无公害。

  最麻烦的土法改装是PHEV插电式混合动力车型“慢充改快充”,这草根改装法的原理是利用机舱内电控器接口接入动能回收系统,用全车唯一大功率的动能回收线路进行快充,最高可以改到30kW充电功率。

  无论动力电池是否有快充能力,其实都具备高倍率充放电的能力,只是受损状况是不明晰的,本身有快充能力的电池可以更多次地快充快放,本身无快充能力的电池只能“折寿”……

  说动能回收系统的充电倍率只有3C左右,理论上不会对PHEV动力电池造成太大的伤害,但若动力电池本身就没做太多冷却优化,长时间大功率充电也会有热失控自燃风险的,工程师在做初始标定的时候根本就没想过车主要开车“连续下坡1.5小时”。当然,目前PHEV改快充之后都是着车充电的,液冷系统循环会跑起来,热失控的可能性比较低,但若遇上风冷系统,这一台静止的车就有风险了,而且保险对这种土法改装还是大额免赔的。

  条件允许的话,慢充为主,快充为辅。不过因为很多家庭都没固定车位和私家充电桩,所以这个理想的模式并不好操作。

  当然,快充自燃的概率很低,最损害电池健康的还是过充电与过放电。为避免过充电,能自行限定SOC不到100%(之前蔚来就在自燃事故之后限定过SOC不能超过90%);为避免过放电,就不要每次都把电量用尽再充。

  目前来看,HEV非插混与PHEV插混的自燃事故很少,还在于HEV和PEHV没有续航焦虑,不需要过充,电池不会像涨到快炸的能量包。

  最好还是不要魔改,最好还是不要涉水,尽量不要暴雨天充电,电池热失控之后赶紧全员跑路并报警,救不回了就别勉强。

  改良BMS电池管理策略,尽可能的避免过充电和过放电,外部短路尽快处理,热失控早期进行预警,热失控后系统自动通知消防和医院(以后或许可以OTA成功)。

  冷却系统的效率也很重要,风冷廉价但极限低,液冷昂贵但靠谱些。一套好的冷却系统不是在电池热失控时进行损管,而是提供一套“让电池始终舒适”的温控方案,尽可能延缓锂枝晶生长的速度。

  提升正极、负极、电解液、隔膜的耐热性是很难的事情,特别在高镍/低钴无钴配方盛行的时代背景下。高镍意味着高容量(炸弹内馅更丰满),低钴无钴意味着低稳定性,这种正极材料将是目前和将来多年的主流。

  更坚韧的SEI隔膜,更稳定的固态电解质,这些都是可能实现的解决方案之一。如果能延长热失控的时间,将逃生时间从2分钟增加到30分钟左右,新能源汽车自燃的致死概率将大幅度降低。

  目前最容易实现的方案应该是增加更多阻燃剂或其他辅助剂,让电池配方更加不容易自燃。现在已有厂商宣称造出了“只冒烟不自燃”的电池,是否真实还得看上车上路后的效果。

  动力电池配方们现在很纠结,我们一方面要求它足够活泼,充电速度快、放电功率大;一方面要求它足够淡定,遇到撞击、浸水、加热、过充放都不会热失控。

  这很人格分裂好不好。对了,成本还不能高,高了卖不掉。“我要五彩斑斓的黑色”,害,一听需求就知道是老甲方了。

  防尘、防水、隔热、阻燃、防呆,这些项目都能够继续加强,但成本和重量可不能无限制加上去。

  泄压阀当然还是要有,防止爆炸当然是好事,不过肯定会有副作用,2019年4月上海徐汇区裕德路泰德花苑小区地下车库的Model S自燃就对旁边泄压,把旁边的奥迪直接烧透了。

  新能源车的保养周期比汽柴油车更长,电池健康状态如何一直都是未知数,仅靠车载BMS去监控,能做的事情有限。

  如果经销商能在车辆保养期间对动力电池做全面检修,老车老电池自燃的概率会降低。蔚来为代表的换电模式,在电池健康检验测试方面有天生的优势。

  目前六成的热失控都是电池里面崩塌自燃,罪名多数都套给锂枝晶(是否正确还没有定论),所以我们要监控析锂效应发生的进度,有损的检测方式包括核磁共振波普技术、光学显微镜技术、透射电镜技术等,均需要拆开电池包;无损诊断的方式包括阿伦尼乌斯曲线、内阻-容量曲线等方式。

  目前中国消费者购买新能源车,保险条款与汽柴油车是一致的,并没有对新能源车主权益进行特定的保护。新能源车的推广是国家意志,未来新能源车必然是主流,保险行业暂时还没跟上节奏。

  就如笔者刚刚所言,我们一方面需要车子充电更快、加速更快,一方面需要车子不易自燃,那么动力电池配方不能在你需要它活泼的时候肯定不稳重,需要它稳重的时候肯定不调皮。就算有解决方案,目前也一定不便宜。

  在有限的预算和技术下,我们当前能做的事情是:尽量买大品牌的动力电池和新能源车,不要过充电/过放电,不要去涉水。

  接下来很长一段时间内,动力电池安全都将是业界最重要的话题(刷续航慢慢的变成为低级揽客手段),充分竞争下的动力电池行业,会逐渐涌现出一批价格合理的安全电池。